‘);
}

تعريف المربع وخصائصه

يُمكن تعريف المربع (بالإنجليزية: Square) على أنَّه عبارة عن شكل هندسي رُباعي الأضلاع، جميع أضلاعه مُتساوية في الطول، ومكوّن من أربعة زوايا داخلية قياس كل منها 90 درجة،[١] كما يُعرف المُربع على أنّه عِبارة عن حالة خَاصة من حالات المستطيل، إذ يتشابه مع المُستطيل بالأضلاع الأربعة المُستقيمة، وبالزوايا الداخليَّة القائمة ذات قياس 90 درجة، بالإضافة إلى أنَّ أقطاره تُنصِّف بعضها البعض، وكل ضلعين متقابلين فيه متوازيان ومتساويان، إلَّأ أنَّه يختلف عن المستطيل من ناحية أن جميع أضلاعه مُتساوية الطول، كما أن أقطاره متعامدة خلافاً للمستطيل،[٢] وبالإضافة إلى ما سبق يتميز المربع بالخصائص الآتية:[٣][٤]

  • أقطار المُربع متساوية، وتنصفان زواياه.
  • إذا كان طول ضلع المُربع يُساوي س، فإنَّ القانون الذي يربط طول قطره (ق) بطول الضلع (س) هو: ق= 2√* س.
  • إذا كانت (ي) نقطة تقاطع قطري المربع، فإن هذه النقطة تشكل مركزاً للدائرة المحيطة (بالإنجليزية: circumcircle) بهذا المربع، كما يشكّل كل قطر من أقطار هذا المربع قطراً لها.
  • أقطار المربع تقسمه إلى مثلثين متطابقين قائمين ومتساويي الساقين،[٥] تعادل مساحة كل مثلث منها نصف مساحة المربع، ويعادل طول وترها طول كل قطر من أقطار المربع.[٦]
  • يساوي مجموع كل زاويتين متجاورتين فيه 180 درجة، أما مجموع زواياه الأربعة فيساوي 360 درجة كغيره من الأشكال الرباعية.

لمزيد من المعلومات والأمثلة حول أقطار المربع يمكنك قراءة المقال الآتي: ما هو قطر المربع.