‘);
}

مساحة متوازي المستطيلات

يحتوي متوازي المستطيلات على ستة أوجه، ويمكن حساب مساحته من خلال إيجاد مجموع مساحات هذه الأوجه، ولكن بما أن الأوجه المتقابلة في متوازي المستطيلات متطابقة، فإننا نحتاج إلى ثلاثة أوجه فقط للتعبير عن المساحة، باستخدام الأبعاد الثلاثية للتعبير عنها، وهي: الطول، والعرض، والارتفاع، وذلك كما يلي:[١]

  • مساحة متوازي المستطيلات الكلية= (2×الطول×العرض) + (2×العرض×الارتفاع) + (2×الطول×الارتفاع)، وبالرموز: مساحة متوازي المستطيلات= (2×أ×ب) + (2×ب×ع) + (2×أ×ع)؛ حيث:

      • أ: طول متوازي المستطيلات.
      • ب: عرض متوازي المستطيلات.
      • ع: ارتفاع متوازي المستطيلات.

تجدر الإشارة هنا إلى أن أنه تم الضرب بالعدد 2؛ لأن كل وجهين متقابلين في متوازي المستطيلات متطابقان؛ أي لهما نفس المساحة، كما أن المساحة تُقاس بالوحدات الطولية المربعة.[١]